212 research outputs found

    Capacitance-to-Digital Converter for Operation Under Uncertain Harvested Voltage down to 0.3V with No Trimming, Reference and Voltage Regulation

    Get PDF
    In Paper 5.2, the National University of Singapore and Politecnico di Torino present a capacitance-to-digital converter (CDC) for direct harvester-powered low-cost systems, showing a 7-bit ENOB down to 0.3V at 1.37nW power without any external reference or voltage-regulation requirements

    Capacitance-to-Digital Converter for Harvested Systems Down to 0.3 V With No Trimming, Reference, and Voltage Regulation

    Get PDF
    In this work, a capacitance-to-digital converter (CDC) suitable for direct energy harvesting is introduced. The nW peak power and the ability to operate at any supply voltage in the 0.3-1.8 V range allow complete suppression of any intermediate DC-DC conversion, and hence direct supply provision from the harvester, as demonstrated with a mm-scale solar cell. The proposed CDC architecture eliminates the need for any additional support circuitry, preserving true nW-power operation, and reducing design and integration effort. In detail, the architecture is based on a pair of double-swappable oscillators, and avoids the need for any voltage/current/frequency reference circuit in the oscillator mismatch compensation. The digital and differential nature of the architecture counteracts the effect of process/voltage/temperature variations. A load-agnostic one-time self-calibration scheme compensates mismatch, and can be run from boot to run stage of the chip lifecycle. The proposed self-calibration scheme suppresses any trimming or testing time for low-cost systems, and avoids any input capacitance disconnection requirement. A 180-nm testchip shows 7-bit ENOB down to 0.3 V and 1.37-nW total power, when powered by a 1-mm2 indoor solar cell down to 10 lux (i.e., late twilight

    Fully Synthesizable, Rail-to-Rail Dynamic Voltage Comparator for Operation down to 0.3V

    Get PDF
    A novel rail-to-rail dynamic voltage comparator is presented in this paper. The proposed circuit is fully synthesizable, as it can be designed with automated digital design flows and standard cells, and can operate at very low voltages down to deep sub-threshold. Post-layout simulations show correct operation for rail-to-rail common-mode inputs at a supply voltage VDD down to 0.3 V. At such voltage, the input offset voltage standard deviation is less than 28 mV (8 mV) over the rail-to-rail common-mode input range (around VDD/2). The digital nature of the comparator and its ability to operate down to deep sub-threshold voltages allow its full integration with standard-cell digital circuits in terms of both design and voltage domain. The ease of design, the low area and the voltage scalability make the proposed comparator very well suited for sensor nodes, integrated circuits for the Internet of Things and related applications

    Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling

    Get PDF
    In this paper, a fully synthesizable digital-to-analog converter (DAC) is proposed. Based on a digital standard cell approach, the proposed DAC allows very low design effort, enables digital-like shrinkage across CMOS generations, low area at down-scaled technologies, and operation down to near-threshold voltages. The proposed DAC can operate at supply voltages that are significantly lower and/or at clock frequencies that are significantly greater than the intended design point, at the expense of moderate resolution degradation. In a 12-bit 40-nm testchip, graceful degradation of 0.3bit/100mV is achieved when V_DD is over-scaled down to 0.8V, and 1.4bit/100mV when further scaled down to 0.6V. The proposed DAC enables dynamic power-resolution tradeoff with 3X (2X) power saving for 1-bit resolution degradation at iso-sample rate (iso-resolution). A 12-bit DAC testchip designed with a fully automated standard cell flow in 40nm consumes 55µW at 27kS/s (9.1µW at 13.5kS/s) at a compact area of 500µm^2 and low voltage of 0.55V

    A Sub-Leakage pW-Power Hz-Range Relaxation Oscillator Operating with 0.3V-1.8V Unregulated Supply

    Get PDF
    A pW-power versatile relaxation oscillator operating from sub-threshold (0.3V) to nominal voltage (1.8V) is presented, having Hz-range frequency under sub-pF capacitor. The wide voltage and low sensitivity of frequency/absorbed current to the supply allow the suppression of the voltage regulator, and direct powering from harvesters (e.g., solar cell, thermal from machines) or 1.2-1.5V batteries. A 180nm testchip exhibits a frequency of 4 Hz , 10%/V supply sensitivity at 0.3-1.8V, 8-18pA current, 4%/°C thermal drift from -20°C to 40°C

    Fully-Digital Rail-to-Rail OTA with Sub-1,000 μm2 Area, 250-mV Minimum Supply and nW Power at 150-pF Load in 180nm

    Get PDF
    A fully-digital operational transconductance amplifier (DIGOTA) architecture for tightly energy-constrained low-cost systems is presented. A 180nm DIGOTA testchip exhibits an area below the 1,000-μm2 wall, and 2.4-nW power under 150pF load, and a minimum supply voltage Vmin of 0.25 V. In the 0.3-0.5 V supply range, DIGOTA improves the areanormalized small (large) signal energy FoM by at least 836X (267X) over prior sub-500mV OTAs, while reducing area by 27-85X. The low-Vmin and nW-power features are shown to enable direct harvesting at the mm scale

    Wake-Up Oscillators with pW Power Consumption in Dynamic Leakage Suppression Logic

    Get PDF
    In this paper, two circuit topologies of pW-power Hz-range wake-up oscillators for sensor node applications are presented. The proposed circuits are based on standard cells utilizing the Dynamic Leakage Suppression logic style [4]-[5]. The proposed oscillators exhibit low supply voltage sensitivity over a wide supply voltage range, from nominal voltage down to the deep sub-threshold region (i.e., 0.3V). This enables direct powering from energy harvesters or batteries through their whole discharge cycle, suppressing the need for voltage regulation. Post-layout time-domain simulations of the proposed oscillators in 180nm show a power consumption of 1.4-1.7pW, a supply-sensitivity of 55-40%/V over the 0.3V-1.8V supply voltage range, and a compact area down to 1,500μm2. The very low power consumption makes the proposed circuits very well suited for energy-harvested systems-on-chip for Internet of Things applications

    A pW-Power Hz-Range Oscillator Operating With a 0.3-1.8-V Unregulated Supply

    Get PDF
    In this paper, a pW-power relaxation oscillator for sensor node applications is presented. The proposed oscillator operates over a wide supply voltage range from nominal down to deep sub-threshold and requires only a sub-pF capacitor for Hz-range output frequency. A true pW-power operation is enabled thanks to the adoption of an architecture leveraging transistor operation in super-cutoff, the elimination of voltage regulation, and current reference. Indeed, the oscillator can be powered directly from highly variable voltage sources (e.g., harvesters and batteries over their whole charge/discharge cycle). This is achieved thanks to the wide supply voltage range, the low voltage sensitivity of the output frequency and the current drawn from the supply. A test chip of the proposed oscillator in 180 nm exhibits a nominal frequency of approximately 4 Hz, a supply voltage range from 1.8 V down to 0.3 V with 10%/V supply sensitivity, 8-18-pA current absorption, and 4%/°C thermal drift from -20 °C to 40 °C at an area of 1600 μm². To the best of the authors' knowledge, the proposed oscillator is the only one able to operate from sub-threshold to nominal voltage

    Optimization of the wire grid size for differential routing: Analysis and impact on the power-delay-area tradeoff

    Get PDF
    In this paper, the impact of the wire grid size on the power-delay-area trade off of VLSI digital circuits with differential routing is analyzed. To this aim, the differential MOS current-mode logic (MCML) is adopted as reference logic style, and a complete differential design flow is used. Analysis shows that the choice of the grid size in differential routing has a much stronger impact on the power-delay-area tradeoff, compared to the usual single-ended case. Hence, the grid size is an important knob that must be carefully selected when differential routing is adopted. The dependence of power, delay and area on the grid size is discussed indetail through simple models, and introducing appropriate metrics. To validate the analysis and show basic dependencies impractical circuits, 30 benchmark circuits with an in-house designed MCML cell library were synthesized and routed in 0.18 mm CMOS technology. Results show thatnon-optimal choice of the grid size can determine a dramatic increase in power (1.7x) and area (1.3x). Interestingly, the grid size that optimizes the power-delay-area tradeoff is almost independent of the specific circuit under design; hence a generally optimum grid size exists that optimizes a very wide range of different circuits

    Standard Cell-Based Ultra-Compact DACs in 40-nm CMOS

    Get PDF
    In this paper, very compact, standard cell-based Digital-to-Analog converters (DACs) based on the Dyadic Digital Pulse Modulation (DDPM) are presented. As fundamental contribution, an optimal sampling condition is analytically derived to enhance DDPM conversion with inherent suppression of spurious harmonics. Operation under such optimal condition is experimentally demonstrated to assure resolution up to 16 bits, with 9.4–239X area reduction compared to prior art. The digital nature of the circuits also allows extremely low design effort in the order of 10 man-hours, portability across CMOS generations, and operation at the lowest supply voltage reported to date. The limitations of DDPM converters, the benefits of the optimal sampling condition and digital calibration were explored through the optimized design and the experimental characterization of two DACs with moderate and high resolution. The first is a general-purpose DAC for baseband signals achieving 12-bit (11.6 ENOB) resolution at 110kS/s sample rate and consuming 50.8μW50.8\mu \text{W} , the second is a DAC for DC calibration achieving 16-bit resolution with 3.1-LSB INL, 2.5-LSB DNL, 45μW45\mu \text{W} power, at only 530μm2530\mu \text{m}^{2} area
    corecore